Электрический ракетный двигатель



ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, электроракетный двигатель (ЭРД) — ракетный двигатель, в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки КА (обычно солнечные или аккумуляторные батареи). По принципу действия ЭРД подразделяются на электротермические ракетные двигатели, электростатические ракетные двигатели и электромагнитные ракетные двигатели. В электротермических РД электрическая энергия применяется для нагрева рабочего тела (РТ) с целью обращения его в газ с температурой 1000-5000 К; газ, истекая из реактивного сопла (аналогичного соплу химического РД), создаёт тягу. В электростатических РД, например, ионном, вначале производится ионизация РТ, после чего положительные ионы ускоряются в электростатическом поле (при помощи системы электродов) и, истекая из сопла, создают тягу (для нейтрализации заряда реактивной струи в неё инжектируются электроны). В электромагнитном РД (плазменном) рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещённых электрических и магнитном полях. На базе указанных основных типов (классов) ЭРД возможно создание различных промежуточных и комбинированных вариантов, в наибольшей степени отвечающих конкретным условиям применения. Кроме того, некоторые ЭРД при изменении режима электропитания могут «переходить» из одного класса в другой.

ЭРД имеет исключительно высокий удельный импульс — до 100 км/с и более. Однако большой потребный расход энергии (1—100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимально целесообразную тягу ЭРД несколькими десятками ньютонов. Для ЭРД характерны размеры ~ 0,1 м и масса порядка нескольких килограммов.

Виски 1958 года купить смотрите на http://wiski.ru.

Рабочие тела ЭРД определяются сущностью процессов, протекающих в различных типах этих двигателей, и отличаются большим разнообразием: это низкомолекулярные или легко диссоциирующие газы и жидкости (в электротермических РД); щелочные или тяжёлые, легко испаряющиеся металлы, а также органические жидкости (в электростатических РД); различные газы и твёрдые вещества (в электромагнитных РД). Обычно бак с РТ совмещается конструктивно с ЭРД в едином двигательном блоке (модуле). Разделение источника энергии и РТ способствует весьма точному регулированию тяги ЭРД в широких пределах при сохранении высокого значения удельного импульса. Многие ЭРД способны работать сотни и тысячи часов при многократном включении. Некоторые ЭРД, являющиеся по своему принципу импульсными РД, допускают десятки млн. включений. Экономичность и совершенство рабочего процесса ЭРД характеризуются значениями коэффициента полезного действия и цены тяги, размеры ЭРД — значением плотности тяги.

Характерные значения некоторых параметров ЭРД

Параметры Тип ЭРД
электро-термический электро-магнитный электро-статический
Тяга, Н 0,1 — 1 0,0001 — 1 0,001 — 0,1
Удельный импульс, км/с 1 — 20 20 — 60 30 — 100
Плотность тяги (максимальная), кН/м2 100 1 0,03 — 0,05
Напряжение питающего тока, В единицы — десятки десятки — сотни десятки тысяч
Сила питающего тока, А сотни — тысячи сотни — тысячи доли единицы
Цена тяги, кВт/Н 1 — 10 100 10 — 40
КПД 0,6 — 0,8 0,3 — 0,5 0,4 — 0,8
Электрическая мощность, Вт десятки — тысячи единицы — тысячи десятки — сотни

 
Важной характеристикой ЭРД являются параметры электропитания. В связи с тем, что для большинства существующих и перспективных бортовых энергоустановок характерно генерирование постоянного тока сравнительно низкого напряжения (единицы — десятки вольт) и большой силы (до сотен и тысяч ампер), проще всего вопрос электропитания решается в электротермических РД, являющихся преимущественно низковольтными и сильноточными. Эти РД могут питаться также от источника переменного тока. Наибольшие трудности с электропитанием возникают при использовании электростатических РД, для работы которых необходим постоянный ток высокого (до 30-50 кВ) напряжения, хотя и малой силы. В этом случае необходимо предусматривать преобразующие устройства, которые значительно увеличивают массу ДУ. Наличие в ДУ рабочих элементов, связанных с электропитанием ЭРД, и малое значение тяги ЭРД определяют чрезвычайно низкую тяговооружённостъ КА с этими двигателями. Поэтому ЭРД имеет смысл применять только в КА после достижения 1-й космической скорости с помощью химического или ядерного РД (кроме того, некоторые ЭРД вообще могут работать лишь в условиях космического вакуума).

Классификация ЭРДИдея использования электрической энергии для получения реактивной тяги обсуждалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916-17 Р. Годдард подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко создал экспериментальный электротермический РД. Затем в связи с отсутствием средств доставки ЭРД в космос и проблематичностью создания источников электропитания с приемлемыми параметрами разработки ЭРД были прекращены. Они возобновились в конце 50-х — начале 60-х гг. и были стимулированы успехами космонавтики и физики высокотемпературной плазмы (развитой в связи с проблемой управляемого термоядерного синтеза). К началу 80-х гг. в СССР и США испытано около 50 различных конструкций ЭРД в составе КА и высотных атмосферных зондов. В 1964 испытаны впервые в полёте электромагнитные (СССР) и электростатические (США) РД, в 1965 — электротермические РД (США). ЭРД использовались для управления положением и коррекций орбит КА, для перевода КА на другие орбиты (подробнее см. в ст. о различных типах ЭРД). Значительные успехи в создании ЭРД достигнуты в Великобритании, ФРГ, Франции, Японии, Италии. Проектные исследования показали целесообразность применения ЭРД в реактивных системах управления КА, рассчитанных на длительную работу (несколько лет), а также в качестве маршевых двигателей КА, совершающих сложные околоземные орбитальные переходы и межпланетные перелёты. Использование для указанных целей ЭРД вместо химических РД позволит увеличить относительную массу полезного груза КА, а в некоторых случаях сократить сроки полёта или сэкономить средства.

Области характеристик ЭРДВ связи с малым ускорением, сообщаемым КА электрическими двигателями, маршевые ДУ с ЭРД должны работать непрерывно в течение нескольких месяцев (например, при переходе КА с низкой орбиты на геосинхронную) или несколько лет (при межпланетных полётах). В США исследовалась, например, маршевая ДУ с несколькими ионными ЭРД тягой по 135 мН и удельным импульсом ~ 30 км/с, питаемыми от солнечной энергетической установки. В зависимости от числа ЭРД и запаса РТ (ртуть) ДУ могла бы обеспечить полёт КА к кометам и астероидам, вывод КА на орбиты Меркурия, Венеры, Сатурна, Юпитера, посылку КА, способного доставить на Землю марсианский грунт, посылку исследовательских зондов в атмосферы внешних планет и их спутников, вывод КА на околосолнечные орбиты вне плоскости эклиптики и т. д. В частности, ДУ в варианте с 6 ЭРД и запасом РТ в 530 кг смогла бы обеспечить пролёт около кометы Энке — Баклунда полезного груза массой 410 кг (включая 60 кг научной аппаратуры).

Исследуются также ДУ с ЭРД, питаемыми от ядерных энергетических установок. Использование этих установок, параметры которых не зависят от внешних условий, представляется целесообразным при электрической мощности КА свыше 100 кВт. Указанные ДУ могут обеспечить манёвры транспортных кораблей вблизи Земли, а также полёты между Землёй и Луной, посылку КА для детального исследования внешних планет, полёты межпланетных пилотируемых КК и т. д. Согласно предварительным проработкам, КА с начальной массой 20-30 т, снабжённый реакторной энергоустановкой мощностью в несколько сотен кВт и небольшим числом импульсных электромагнитных ЭРД с тягой по несколько десятков Н, смог бы в течение 8-9 лет исследовать детально систему Юпитера, доставив на Землю образцы грунта его спутников. Достижение высоких расчётных характеристик ДУ для такого КА требует, однако, решения многих проблем.

Разработка ЭРД способствует решению теоретических вопросов и созданию специальных материалов, технология, процессов, элементов и устройств, имеющих большое значение для развития промышленных технологических процессов, электротехники, электроники, лазерной техники, термоядерной физики, газодинамики, а также космических, химических и медицинских исследований.
 
Источник: Космонавтика: Энциклопедия / Гл. ред. В. П. Глушко…